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Ah&act--This work analyses the effect of impurities of a noncondensable gas present in the bulk of a 
vapor in direct contact condensation. The physical model is a free laminar stream that is exposed to its 
own vapor atmosphere containing the inert gas. The solution is based on the boundary layer conservation 
equations and is obtained using an exact similarity solution and an approximate integral method. 

The analysis predicts reduction in the heat transfer rates near the “leading edge” (small x*), which 
may be sigticant depending on the concentration of the noncondensable gas and the temperature 
driving force. This effect is accentuated at lower pressures. Far downstream (x* > 1) the reverse effect is 
observed, namely, the local heat flux becomes much higher compared to the case without the presence 

of noncondensables. 

NOMENCLATURE 

constant, equation (26); 
heat capacity at constant pressure ; 
diffusion coefficient ; 
dimensionless stream function, equation _ 
(17); 
dimensionless temperature gradient, 
equation (B.12); 
the value of F* for TT = 1; 
stream thickness ; 
molecular weight ; 
dimensionless constant, equation (25); 
total pressure; 
Prandtl number, C&‘/k’; 

p,&. 

P’P ’ 
local heat flux; 
local heat flux for TF = 1; 
diffusion boundary-layer thickness, s(x); 
dimensionless diffusion boundary layer 
thickness, s(x)/L ; 
Schmidt number, p/pD ; 

t, 
t* 9 

T, 
T*, 

T 03, 

U, 

u*, 

uo, 
6 
u*, 
w, 

w*, 
3, 
Y9 
Y*T 

thermal boundary layer thickness, t(x); 
dimensionless thermal boundary layer 
thickness in the liquid, t(x)/L; 
local temperature ; 
dimensionless temperature (T - To)/ 
(Tm - To); 
temperature corresponding to the total 
pressure of the pure vapor ; 
longitudinal velocity; 
dimensionless longitudinal velocity, 

ulucl ; 
stream velocity, constant; 
normal velocity ; 
dimensionless normal velocity, Lu/a’ ; 
dimensionless mass fraction of the non- 
condensable gas, equation (7); 
w/w, ; 
longitudinal coordinate; 
dimensionless longitudinal coordinate, 
x a’/L’u, ; 
normal coordinate. 
dimensionless normal coordinate, y/L; 
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Greek symbols 
iherrnal diffusivity of the liquid, k’/p’CI,; 
hydrodynamic boundary-layer thick- 
ness, 6(x) ; 
dimensionless hydrodynamic boundary 
layer thickness, 6/L ; 

similarity variable, equation (16) ; 
latent heat of vaporization ; 

&lc’,p’Km - TJ; 
absolute viscosity, for vapor gas mixture 
when used without subscript; 
s/6 or P/6*; 
density, for vapor-gas mixture when 
used without subscript; 
dimensionless stream function, equation 

(17). 

Subscripts and superscripts 

0, inlet, at x = 0; 
co, in the bulk ; 

99 noncondensable gas ; 

i, at the interface ; 
m, for pure vapor; 
v, condensing vapor ; 
I 
1 liquid, also differentiation with respect 

to?; 
* . dimensionless variable. 

INTRODUCTION 

IT IS well known that the presence of a non- 
condensable gas in the bulk of a vapor appreci- 
ably effects the efficiency of heat transfer in 
condensation. Experimental results reported 
elsewhere [1], show that a reduction of almost 
fifty percent may occur compared to the case 
where the vapor is pure. This drastic reduction 
has been mainly attributed to a build-up of a 
noncondensable gas at the liquid-vapor inter- 
face. Hence, the saturation temperature at the 
interface drops and reduces the temperature 
difference for heat transfer. It has also been 
shown [2] that this effect is generally more 
significant than the effect of interfacial resistance 
and is more appreciable at lower pressures. 

Sparrow [3] was the first to formulate a 
theory, based on conservation laws alone, to 

evaluate this effect. His study and others [3, 41 
were concerned with vapor condensation on a 
solid surface. This work, however, deals with 
direct contact condensation, namely, where the 
vapor is condensed directly on a stream of cold 
liquid. The practical importance of this in- 
vestigation lies, for example, in the area of water 
desalination where direct contact heat transfer 
is now under intensive development [5]. 

PHYSICAL MODEL AND BASIC EQUATIONS 

The physical model is a free laminar stream of 
liquid with constant thickness. It is exposed to 
its own saturated vapor atmosphere containing 
a noncondensable gas. Condensation occurs 
since its inlet temperature is lower than that of 
the vapor. The velocity of the stream is relatively 
high and approaches a slug-type flow. The 
transport processes are carried out in a vapor- 
gas boundary layer formed due to interfacial 
drag. A schematic diagram of the model 
described is shown in Fig. 1. 

I x 

FIG. 1. Physical model and coordinate system. 
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The following assumptions were made : 

(a) The thickness of the stream remains 
constant, neglecting the amount of vapor 
that condenses. 

(b) The velocity everywhere in the stream is 
constant neglecting the interfacial drag. 

(c) Free convection in the vapor-gas phase is 
negligible because of the relatively high 
velocities of the stream. 

(d) The interface is impermeable to the non- 
condensable gas. 

(e) Sensible heat effects are neglected; thus, 
energy equations in the vapor-gas phase 
are ignored [3]. 

(f) Interfacial resistance is negligible [2]. 
Thus, the vapor temperature at the inter- 
face is that of the liquid surface. 

(g) In the liquid stream axial conduction is 
assumed to be negligible compared to that 
in the transverse direction. 

(h) Physical properties of the liquid and 
vapor-gas phases are constant. 

The governing equations in a dimensionless 
form are given below : 

For the liquid stream 

aT* a2T* -=- 
ax* ay*2’ 

The boundary conditions are : 

T* = 0 at x* = 0 

aT* 
-=O 
aY* 

at y*=-1. 

For the vapor-gas boundary layer 

au* au* 
ax*+-;;=0 

ay 

u*g +v*!!!c=p*_ a%* 

ay* ay*2 

aw* aw* P* azw* 
~*ax++v*a,+=,,ay*2. 

0) 

(2) 

(3) 

(4) 

(5) 

(6) 

The definition of the dimensionless (starred) 
values are given in the nomenclature. w* = 
w/w, where w is the local mass fraction of the 
noncondensable which is related to its partial 
pressure, assuming for this purpose ideal gas 
behavior, through the following equation : 

Ps 1 
WC-.-_= 

P Ii- 
( > 

F-1 2 
a B 

The boundary conditions are : 

u* = 0 3 w* = 1 at x* = 0 (8) 

P* aw* --- 
sc ay* 

+ w*v* = 0 at y* = 0 (9) 

where the last equation expresses assumption (d). 

u* = 0 , w* = 1 at y* + co. (10) 

In addition we have the following matching 
boundary conditions at the interface : 

u* = 1, 
aT* 

VrA* 

ay”=- ’ 
at Y * = 0. 

(11) 

Also, as shown by equation (7) the noncon- 
densable gas concentration at the interface is a 
function of the vapor partial pressure Pvi. 
Using an appropriate correlation relating vapor 
pressure to temperature for specific cases, one 
can get from equation (7) a relation between 
Tf and wi or wf, namely: 

T: = f 2, T,, To, w,. 
> 

(12) 
B 

Inspection of the above equations indicates 
that a particular solution depends on the para- 
meters : 

SC, #I*, P*, 2, p or T,, G, w, (13) 
B 

and the P,-T relation for the condensing vapor. 



1160 YEHUDA TAITEL and ABRAHAM TAMIR 

SOLUTION 

The problem was solved by two methods: an 
exact similarity solution which applies for small 
x* and an integral method which yields a 
solution for small and large x*. 

Similarity solution 
Using a similarity transformation the equa- 

tions of motion, continuity and diffusion (4) (5) 
and (6) yield a constant value for the interface 
temperature. Therefore the energy equation for 
the liquid stream (1) can be solved for Tr = 
constant and the boundary conditions (2) and 
(3). The value of T: is later determined through 
the boundary condition (12) at the interface. 
Under these conditions the solution for the 
interfacial temperature gradient in the stream is 
found to yield [6] : 

g=--$$ [l+ 22(-lYexp(-n'$)] 

n=l 

at y* = 0. (14) 

A similarity solution exists when the second 
term is negligible, namely, small x* ; hence : 

aT* 
-= T: 
ay* -J(xx*) at Y* = 0. (15) 

In the vapor-gas phase the conservation 
equations (4) to (6) are solved by utilizing the 
following similarity variables : 

J/ = J(P*x*)&) where q= y* & 
J( > 

(16) 
The velocity components are given by : 

u* = all/ = f’(q), 
w 

“*=-all/ 
ax* 

= 05 [?f’(v) -AdI. (17) 

This leads to the following ordinary differen- 
tial equations : 

f”j- + 2f”’ = 0 (18) 

W*” + 0.5 SC fw*’ = 0 (19) 

where the differentiation is with respect to q. 
The transformed boundary conditions are : 

as yl+oo: f'=O,W*= 1 (20) 

at rj =0: f'= l,f=fi 

and 

w*’ + 0.5 scf;w* = 0. (21) 

Use of the matching conditions (11) yields 

fi = $-& = constant. (22) 

Equations (18) and (19) were solved for given 
values of J; which is determined later for a 
specific system by condition (12). For computa- 
tional purposes, equations (18) and (19) were 
transformed into integral equations which ‘are 
given in Appendix A. The momentum equation 
was solved by a an iterative procedure whereas 
the concentration distribution was directly 
obtained by numerical integration. The com- 
putations were performed on a CDC 6400 
computer. Results of 

were plotted on Fig. 2 for various Schmidt 
numbers. Computation time is of the order of a 
few seconds. 

The integral method 
The method is detailed in Appendix B. 

Polynomials of the second order were assumed 
for the velocity and concentration profiles in the 
vapor-gas boundary layer, and for the tempera- 
ture in the liquid stream Consequently a set of 
six equations was obtained and solved simul- 
taneously. 

For small x* (where T: is constant), the 
analysis leads to a very simple and useful 
equation applicable for Schmidt numbers larger 
than 1. 
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Sc=O.52 

l 

N=+ 

FIG. 2. Generalized curves of w: as a function of N for small 
x*. 

w: = (1 + 0.5 SC N2) 

+ J[(l + 0.5 SC N2)2 - 11. (23) 

For Schmidt numbers less than unity the 
following equation was obtained : 

one can see that the results are almost identical, 
where in some other cases the error may reach 
50 per cent. It was, however, found (see Figs. 
3-7) that the maximum error introduced in Tr 
for specific systems (water and carbon tetra- 
chloride) is less than 15 per cent. Equations (23) 
and (24) therefore yield a valid approximation 
for the interface concentration of the non- 
condensable and its saturation temperature. 
The reason for the comparatively small error in 
Tf is the steepness of the saturation line (see 
dashed line in Fig. 2). Thus the solution for Tf, 
obtained from the intersection of the wl curves 
[computed from equation (23) or (24)] with the 
saturation line, is not very sensitive to errors in 
WT. 

The solution for large x* (2 l/12) was ob- 
tained only for practical cases (Schmidt numbers 
less than unity) by numerical integration of the 
set of the ordinary differentiation equations 
(B 14-B.18). Typical results are given in Fig. 8. 

RESULTS AND DISCUSSION 

The results for small x*, obtained from the 
similarity solution, are summarized in Fig. 2 
where the dimensionless interfacial concentra- 
tion wr is plotted vs. Ty/(l*JP*). The para- 
meter in these curves is the Schmidt number 
which varies from 0.1 to 10. When applying 

8(,/3)B + 24N - B2N SC + d{[8(,/3) B + 24N - B2N Sc12 

w: = - 4[4(J3) B - B2N SC] [4(J3) B + 24N]} 

8(J3) B - 2B2N SC (24) 

where 

TT 
N=pJP* (25) 

B= -$N+&N’+20). (26) 

A comparison of the results obtained from 
equations (23) and (24) to those obtained from 
the similarity solution is summarized in Table 1. 
For Schmidt number equal to 2, for example, 

these generalized curves for particular systems 
of liquid-vapor at given operating conditions, 
one needs in addition a relation between wr and 
TT (or N). This is obtained by substituting the 
correlation of vapor pressure-temperature into 
equation (7). Appendix C details these equations 
for water vapor and carbon tetrachloride. A 
typical example is given by the dashed line on 
Fig 2. The intersection of this line with the solid 
line corresponding to a given Schmidt number 
defines Tt and WT. For practical purposes 
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Table 1. Comparison qfvalues of w! obtained from similarity solution and integral method 
- -“~_l__ 

SC 0.1 0.2 0‘5 1 2 5 10 
_~._I_ -.-- - -___I_- -._ ~--_- .._.__ _ __ 

?‘f 
-. _- I’Jp* a b u b a h a b c a c a c a c 

~I_~ ____---“-. -___--“-.----.~_ -“_---- _I_~~~ -- -l.l_ ..“. . - - 

1 2.1 z-5 2.3 2.6 24 2.9 3.1 2.6 3.7 3.9 3,7 6.2 6% 9.6 11.9 
2 4.3 5.8 4.8 6.1 5.4 7.1 7.2 5.8 3.9 9.9 9.9 18.1 21.9 320 42,O 
5 19.3 27.9 20,9 29.5 25.8 35.2 34.2 26.9 51.9 51.0 51.0 s17.7 127.0 180.3 252.0 

10 71.8 106.9 78.5 112.8 98.2 1352 135.2 102.0 201.9 1940 2020 3950 502.0 8650 1002~0 
15 159.4 23835 174.4 251.7 218.7 301.9 289.3 227.0 452.0 433.4 452.0 990.0 1127.0 - 

a--Results from exact solution (similarity solution). 
b-&alculated by equation (24) for 5 > 1 (integral method). 
c--Calculated by equation (23) for t; < 1 (integral method). 

Water : &=lOOoC SC =@53 

-Exact solution ’ 
---- Integral method 

Water &, =60°C SC =053 

- Exact solution 
---- Integral method 

i 

OL I I I I I Ol I I I I I 
0 IO 20 30 40 50 0 IO 20 30 40 50 

r,-r,, “C F&-r,, *c 

FIG. 3. Heat flux ratio for water at 760 mmHg, small K*. FIG. 4. Heat flux ratio for water at 150 mmHg, small x* 

Appendix C includes also curves of wi vs. T for for two systems. The first involves condensation 
several saturation temperatures (T,). Use of of steam on a cooled water stream, while the 
these curves with Fig. 2 makes it possible to other involves carbon tetrachloride condensing 
solve this problem conveniently by trial and on its coolant, both in the presence of air as the 
error or graphically. nonconden~ble gas. The physical properties 

Numerical results for small x* are obtained for these fluids were found or estimated from 
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0 I I 
0 IO 20 30 40 50 

To - T,. OC 

FIG. 5. Heat flux ratio for water at 55 mmHg, small x*. 

r,-r,, *c 

FIG. 7. Heat flux ratio for carbon tetrachloride at 1.50 mmHg, 
small x*. 

1 
C.T.C : &=76.7’X SC =@2 

- Exact solution 
---- Iotegrol method 

I.0 

1.. 
h 0.6 

$8 

2 \ 
P 0.4 

L, 
c -1 -WV__ oao5 

/---- 

---_ 
---_ 1 0.01 

--____ 1 O-02 1 

- wm = 0.0 
- - Iv, = 0.001 
____- wm = 0.01 
--- wm =04 

0 0,083 I 
X’ 

RG. 6. Heat flux ratio for carbon tetrachloride at 760 mmHg, FIG. 8. Dimensionless interface temperature and temperature 
small x*. gradient along a water stream. 
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[7-91. These results are shown in Figs. 3-7 
where the heat transfer efficiency, q/q,,,, is 

plotted vs. the thermal driving force, T, - To, 
for various noncondensable concentration in 
the range of OOOOl to 0.1 weight fraction 
and for several levels of pressure in the range 
of 50 mm Hg to atmospheric pressure. The 
ratio q/q,,, is obtained from equations (15) 
or (B.20) and is equal to TT. The solid lines 
correspond to the exact solution while the 
broken lines are the result of the integral method. 
In general these graphs emphasize the effect of 
the noncondensables on reducing heat transfer 
efficiency, which is accentuated with increasing 
inert concentration, thermal driving force, and 
decreasing total pressure. It may also be 
observed that the system of carbon tetrachloride 
seems to be more sensitive than water to the 
presence of noncondensables under identical 
total pressure and w,. However if molar fraction 
is used instead of weight fraction one finds that 
water and carbon tetrachloride behave roughly 
the same. 

Results for the case where the condensation 
of steam occurs on a cooled solid surface were 
obtained by Mincowycz and Sparrow [2, 31. 
Their report shows that the effect of inerts in 
reducing the heat flux is larger than in the case 
treated here which considers direct contact heat 
transfer. The general trends, however, are the 
same. 

Experimental results have also been reported, 
primarily for condensation occurring on metallic 
surfaces. An investigation [lo] which does 
consider direct contact condensation was re- 
cently reported for condensation of steam on 
water flowing in a tray. Comparison between 
the present analysis and the above mentioned 
work shows that the experimental values given 
there for the heat transfer coefficients are much 
higher than the ones predicted here. This is 
probably due to the fact that the flow over the 
plate was not laminar. 

Solutions for the dimensionless interface 
temperature, T:, and temperature gradient, F*, 
for small and large x* were obtained using the 

integral method, for a typical system where 
saturated steam at 760 mmHg is condensed on 
a water stream at an inlet temperature of 70°C. 
The results are contained in Fig. 8. The effect of 
the noncondensables is studied by considering a 
range of w, from 0 to 0.1. As would be expected, 
the value of the dimensionless interfacial tem- 
perature Tf is unity for the ideal case of pure 
vapor. In the presence of air, the value of Tf 
decreases when w, increases. This value is 
constant near the “leading edge” (the case where 
the similarity solution is valid) but increases as 
a function of x* to the asymptotic value T, = 1 
as x* -+ co. With respect to this we note that TT 
would be somewhat less than unity as x* -+ CC! 
because of the small concentration of non- 
condensables in the bulk of the vapor. 

Results for the dimensionless temperature 
gradient F* (proportional to the local heat flux) 
are also illustrated in Fig. 8. For the case where 
wb = 0 a closed form solution is obtained 

j&F;=--_l__. 1 

&3x*) ’ 
x* < - 

12 
(27) 

F* = Fz = 2exp(-3x* + 0.25); x* 3 A 

(28) 

and is plotted by the solid line. In general the 
value for F* decreases for increasing x*. It is 
interesting to observe that although for small 
x*, (namely, near the “leading edge”) the heat 
flux with noncondensables is less than without 
inerts (Fz > F*), the reverse effect occurs for 
large x* where F* > F$ This phenomenon is 
explained as follows: In general the heat flux 
into the cold stream is governed by two factors- 
(a) the absolute value of Tr and (b) its rate of 
increase along x*. For a small rate of increase, 
it can be shown that near the “leading edge” the 
absolute value of the temperature difference is 
the dominant factor but it becomes negligible 
far downstream due to its exponential decay. 
Hence, in the downstream region the rate of 
increase of T: becomes the controlling factor. 
Although in our case the absolute value of T: is 
lower for higher concentrations of noncon- 
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densables, the heat flux for large x* is higher in 
these cases because of the higher rate of change 
of Tt with x*. This could also be seen by noting 
that the total heat delivered to the stream is 
approximately equal in all cases for large x* 
because the stream temperature reaches the 
equilibrium temperature of the bulk. Thus, the 
area under all curves of F* vs. x* should be 
almost equal. This, of course, means that if the 
value of F* is lower for small x* it must be 
higher for large x*. 

This characteristic behavior is completely 
different from the cases of condensation on solid 
surfaces, where it was found that the local 
conditions determine essentially the local heat 
flux due to the “poor memory” of the flow to 
upstream conditions [2]. This fact made it 
possible to use a local-similarity approximation 
for condensation on a plate. In the present case 
the upstream conditions are very important, and 
in fact are the dominant factors in the determina- 
tion of the heat fluxes. It should be emphasized, 
however, that in spite of this interesting result 
the most important region is the one near the 
“leading edge”, because in all cases this is the 
region of highest heat fluxes and most of the 
heat is transferred to the liquid through this 
region (unless the concentration of noncon- 
densables is exceptionally large). 

CONCLUDING REMARKS 

An analysis of the effect of noncondensables 
on direct contact condensation was carried out. 
An exact similarity solution for small x* and an 
integral solution for small and large x* are 
presented. The agreement between the two 

methods was tested for small x*, and the integral 
method was found to predict heat transfer rates 
which deviate from the exact solution by less 
than 15 per cent (and which usually fall below 
the exact solution). 

For small x*, near the “leading edge”, the 
interfacial temperature and heat fluxes decrease 
when the concentration of noncondensables is 
increased and when the total pressure is reduced. 
For large x* it was found that the local heat flux 
exceeds the flux for pure vapor. 
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3. 

4. 

5. 
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The integral form of equations 
The Integral Equations 

(18) and (19) and the boundary conditions are 

APPENDIX A 

f=1;+[f’drl (A.1) 
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64.2) 
1 exp( -05 [ f dq) dq 

f’=f-l 

1 exp( -0.5 [ f dy) dvl 

w*=1+ 
0.5 ScL(l exp( - 0.5 [ Scfdy) dq - a exp( - 0.5 [ Scfdq) dy) 

1 - 0.5 Scf, 1 exp( -0.5 1 Scfdq) dv] 
(A.3) 

C solution forf’ is obtained by an iterative procedure using equations (A.l) and (A.2). The con- 
centration profile is obtained by direct numerical integration of equation (A.3). 

APPENDIX B 

The Integral Solution 

The momentum and diffusion equation (5) 
and (6), when integrated and combine: with 
equation (4), yields the following integral equa- 
tions : 

6’ 

a - 
ax* s u*2 dy* - , y*= _p*au* 

ay* y*=o 
0 

(B.1) 

SJ 

a __ 
ax* s 

u*(l - w*)dy* = VT. 

0 
Second-order polynomials were assumed for 

the velocity and concentration profiles : 

u*=I-2(;)+(;y (B.2) 

w*=w~-(wt-1)[2(~)-~~~]. 

(B.3) 

These profiles satisfy the following boundary 
conditions : 

at y* = 0: u* = 1, w* = w:(x*) (B.4) 

at y* = 6*(x*): U* = 0, aqay* = 0 

(B.5) 

at Y * = s*(x*); W* = 1, aw*py* = o. 

U3.6) 

The integral form of the energy equation is : 

- i’ 

d _ T’dy”+ 
dx* s 0 

(B.7) 

For t* < 1 (thermal boundary-layer region) we 
assume : 

T* = T;(x*) [I + 2(f;) + (;)‘I. (B.8) 

This second-order polynomial satisfies the 
following boundary conditions : 

at y* = 0: T* = TT(x*) (B.9) 

at y*=-t*: T* = 0 aT*= 0. 
9 ay* 

(B. 10) 

Once t* = 1 we obtain 

T* = TT + F*(x*) (y* + 0.5 Yap) (B. 11) 

which satisfies the following boundary condi- 
tions : 

at * - 0. BT* = F*(x*) y - . 
aY* 

3 T* = Ts(x*) 

(B.12) 
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aT* 
at y* = - 1: - =: 0. 

w 
(B.13) 

Substitution of the polynomials into the 
integral equations, and using the matching 
conditions, equations (11-12) yield the following 
set of six equations for the unknowns F*, UT, 
a*, 5, Tr and w: : 

; t* < 1 (B.14.1) 

F* z&T: -;F*); t* = 1 

(B.14.2) 

f$ = 
F* -- 
A* 

(B.1.5) 

dJ* lop* -- - = 5v: 
dx* a* (B. 16) 

-&wr- 1>~*&-:+~5-&t2)1 

=v:; <<l (B.17.1) 

=u:; r>1 (B. 17.2) 

1 

wf = 1 + 05 @*VT Se/P*’ 
(B. 18) 

Since wt and 1°F are related, another equation 
is required. It is derived from equation (12), 
where the appropriate relationship between 
temperature and vapor pressure is used (see 
Appendix C). 

For the region where x* < -& (t* < 1) a 
closed form solution of the set is found and the 
results are : 

Tf = constant (hence wr equals constant) 

(B. 19) 

F* = Tf,‘J(3x*) (B.20) 

0: = - T,*/[n* 4(3x*)] (B.21) 

S* = B,i(i??) (B.22) 

6N 
5 = ~~3)~w~ _ I); r < 1 (B.23.1) 

5= 
1 

; 5>1 

2 -- ;: B(w;- 1) 

(B.23.2) 

and the values for w: are reported in equations 
(23) and (24). Note that all the variables are 
given in terms of T: or wr which were found to 
be constant The solution for Tr and wt (and 
thereby for all the variables) is obtained when 
we combine the last equation (C.2) which 
relates wr to TT through the vapor pressure- 
temperature correlation with equations (23) 
and (24) and solve both equations simul- 
taneously. This procedure, which was used also 
for the exact solution, can be performed most 
conveniently graphically as illustrated in Fig 2. 

For the region where x* > & (t* = 1) the 
above mentioned set of equations were simul- 
taneously numerically integrated. For this pur- 
pose the equations are first brought into a form 
where the Runge-Kutta method for numerical 
integration can be applied. The initial values at 
the starting point x* = & are taken from the 
analysis for x* < A. 

It should be mentioned that in all calculations, 
only the first order terms for 5 in equation (B. 17) 
were retained. Retention of higher order terms 
proved to have an insignificant effect on the 
results, while considerably complicating the 
algebra. 

APPENDIX c 
The ~elutio~hi~ Between wf and Tt 

For water : the vapor pressure-temperature 
correlation [ 1 l] is : 

In,, i = A - B In,, T + CT - R/T (C.l) 

where A = 2859051, B = 8.2, C = 2.4804 x 
10T3, D = 3142.31, E = 75OJX2, P = Vapor 
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pressure in mm Hg, T = Temperature in degrees 
Kelvin. 

For carbon tetrachloride : the vapor pressure- 

Substitution of the last equation into equation 
temperature relationship was correlated [7, 81 
and found to be : 

(7) yields the following relationship : 1719.16 
ln,,P = - T + 7.8021. (C.3) 

The relationship between w: and T: has the 
form of equation (C.2) where : 

B=C=O, D = 1719.16, M, = 153.84. 

- C(T, - T,) + D (c.2) P and T are the same units as before. 
For convenience in practical applications 

where M, = 18.02 and M, = 28.97. there relations are plotted in Figs. 9 and 10. 
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FIG. 9. w vs. T for various bulk saturation temperature of 
water. FIG. 10. w vs. T for various bulk saturation temperatures of 

carbon tetrachloride. 

R&urn&-Ce travail analyse l’effet des impure& d’un gaz non condensable prCsent dans le sein d’une 
vapeur au tours de la condensation en contact direct. Le modhle physique est un koulement laminaire 
libre qui est expost B une atmosphkre de sa propre vapeur contenant le gaz inerte. La solution est basCe 
sur les tquations de conservation de la couche limite utilisant une solution de similitude exacte et une 
mdthode int&rale approchi?e. 

La thCorie pr&dit une diminution des densit& de flux de chaleur p&s du “bord d’attaque” (petits x*). 
qui peut &tre importante selon la concentration du gaz noncondensable et la force motrice thermique. Cet 
effet est accentuC aux pressions les plus faibles. Loin en aval (x* > 1) l’effet inverse est observt c’est+dire 
que le flux de chaleur local devient beaucoup plus &levt cornpark au cas sans la prdsence de gaz 

noncondensables. 

Zusammenfassung-Der Einfluss von Verunreinigungen eines Dampfes durch Inertgase auf die Kon- 
densation wird untersucht. Als physikalisches Model1 liegt eine freie laminare Str(imung, die ihrem eigenen 
durch Inertgase verunreinigten Dampf ausgesetzt ist, zugrunde. Die theoretische LBsung basiert auf 
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den Erhaltungssltzen fiir die Grenzschicht, wobei ein exaktes Xhnlichkeitsgesetz und eine anpensherte 
Integralmethode verwendetwird. 

Die Analyse sagt eine Erniedrigung der lokalen WLrmeiibergangszahl in der Nlhe der “AnstrGmkante” 
((kleines x*) voraus, die je nach Inertgaskonzentration und treibender Temperaturdifferenz bedeutend 
sein kann. Dieser Einfluss ist gri5sser bei niedrigeren Driicken. Weit stromabwiirts (x* > 1) hingegen ist 

die ijrtliche WZirmestromdichte vie1 griisser als bei Abwesenheit der Inertgase. 

ABHOT~QHSI--R ~aHHOZipa6oTeaHa~~l3~~pyeTc~BJIIlRH~Ienp~Mece~HeKOH~eHC~pyeMOrOra3a 
K napy npH npSIMO# KOHTaKHO$i KOHAeHC~llIl. @,a3HYeCKaH MOReJIb npeflCTaB.iIHeT CO6Oti 

cB060~~bS% naMmrapHbIi2 noToK B aTMoc@epe napa, coaepmaluero MHepTHbIt ra3. PemeKHe 
OCHOBbIBaeTCH Ha ypaBHeHMFIX COXpaHeHIJH nOrpaHMqHOr0 CJIOR C HCnOJIb30BaHMeM TOYHOr3 
aBToMoaenbHor0 pemeHsnI npn6nnHteHHoro aHTerpanbHor0 MeTo~a.)JaeTcHpacs&TcHLi1Ke- 
HAH CKOpOCTIlTenJI006MeHa~JIH ManbIXX*.OHO MOH(eT 6bITb 3HaqllTeJIbHOB3aBACLIMOCTIJ OT 
KOHqeHTpaqMII HeKOHHeHCIlpyeMOrO ,'a38 II TepMMYeCKOti ~BlIHEy~efi CHJIbI. 3TOT 3@$eKT 
oTqeT.nlfBee npofzBnneTcK npli HI~KIIX AaBneHIfHx. naneli ~~11.7 no TeqeHMro (x* > 1) 
Ha6JIIO~aeTCH npOTMBOnOJIO~HOe BJILiRHHe, a MMeHHO, JIOKaJIbHbIti TenJIOBOi nOTOK CTaHO- 
BHTCR HaMHOrO 6OJIbLLle n0 CpaBHeHLiIO CO CJIyYaeM OTCyTCTBIlR HeKOHfieHCHpyeMbIX ra30B. 


